Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(27): 3677-3680, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38456735

RESUMO

A strategy for the preparation of hydrogel layer MXene membranes by an F-free method was proposed. It maintained high permeance (2686.1 L m-2 h-1 bar-1) and separation efficiency (99.99%) even after 300 min of emulsion separation. The membrane resisted harsh chemical and microbiological environments and efficiently treated actual oily wastewater.

2.
J Colloid Interface Sci ; 607(Pt 1): 378-388, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34509112

RESUMO

Membrane separation technology is one of the best methods to deal with wastewater released from oil spills and industrial wastewater. Therefore, we designed and prepared hydroxyl-rich titanium carbide MXene materials and filtered them onto a commercial polyvinylidene fluoride substrate membrane to obtain a cracked-earth-like MXene membrane with abundant hydroxyl groups and excellent underwater wettability. The underwater oil contact and sliding angles were approximately 157° and less than 3°, respectively. Moreover, the membrane effectively separated a variety of surfactant-stabilized stable emulsions with a high permeation flux of up to 6385 L m-2h-1 bar-1 and offered adequate performance after five cycles of the separation experiment. Additionally, the membrane exhibited remarkable resistance toward corrosive chemicals without any decrease in its underwater wettability performance. For example, the membrane was used to separate the emulsions containing alkali, salt, and acid. This study provides a new strategy to resolve the oily wastewater disposal problem by fabricating a cracked-earth-like MXene membrane with abundant hydroxyl groups.


Assuntos
Purificação da Água , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Titânio , Água
3.
Transl Cancer Res ; 9(9): 5555-5565, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35117919

RESUMO

BACKGROUND: It is widely accepted that inflammatory cytokine, interleukin 6 (IL-6), was not only elevated in cancer but also important in carcinogenesis. But how did IL-6 be produced in tumor microenvironment remains to be addressed. METHODS: Both bioinformatics tools and quantitative real time polymerase chain reaction (RT-PCR) were used to examine the expression of IL-6 in cancer cells. To map super-enhancers of IL-6, sgRNAs were constructed. Stable knockout cells were established and subsequently used for cell proliferation and colony formation assay. The correlation between mapped super-enhancers and IL-6 expression was studied by ATAC-seq analysis. RESULTS: The expression of IL-6 was high in multiple cancers, including pancreatic cancer (PAAD). The elevated expression of IL-6 in PAAD was further confirmed by transcriptional data and in a panel of pancreatic cancer cell lines (one immortal HPDE6-C7 cell line and four PDAC cell lines: BxPC-3, PANC-1, AsPC-1 and CFPAC-1). When treated with JQ-1 and I-BET-762, two inhibitors of super-enhancers, the expression of IL-6 in multiple cancer cells including CFPAC-1, HeLa and SUM-159 cells was significantly reduced. By analyzing the H3K27Ac profiling, BRD4 binding, Med1 binding and DNA conservation in CFPAC-1, HeLa and SUM-159 cells, we identified a potential super-enhancer (IL6-SE) that might be important for IL-6 expression in cancer. The super-enhancer (IL6-SE) can be further divided into two elements (IL6-SEa and IL6-SEb). Genetic deletion of IL6-SEa in cancer cells greatly reduces the expression of IL-6. IL6-SEa deficient cells also showed low proliferation and colony formation ability. In patients, the epigenetic activation (ATAC signal) of IL6-SEa is correlated with the expression of IL-6. CONCLUSIONS: In summary, we not only provide convincing experimental evidence to demonstrate that IL-6 expression in cancer is dependent on super-enhancers but also identified IL6-SEa as a critical DNA regulatory element. Our findings provide new insights to understand the epigenetic regulation of IL-6 expression in cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...